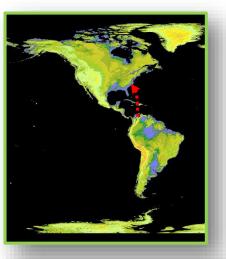
NC STATE UNIVERSITY

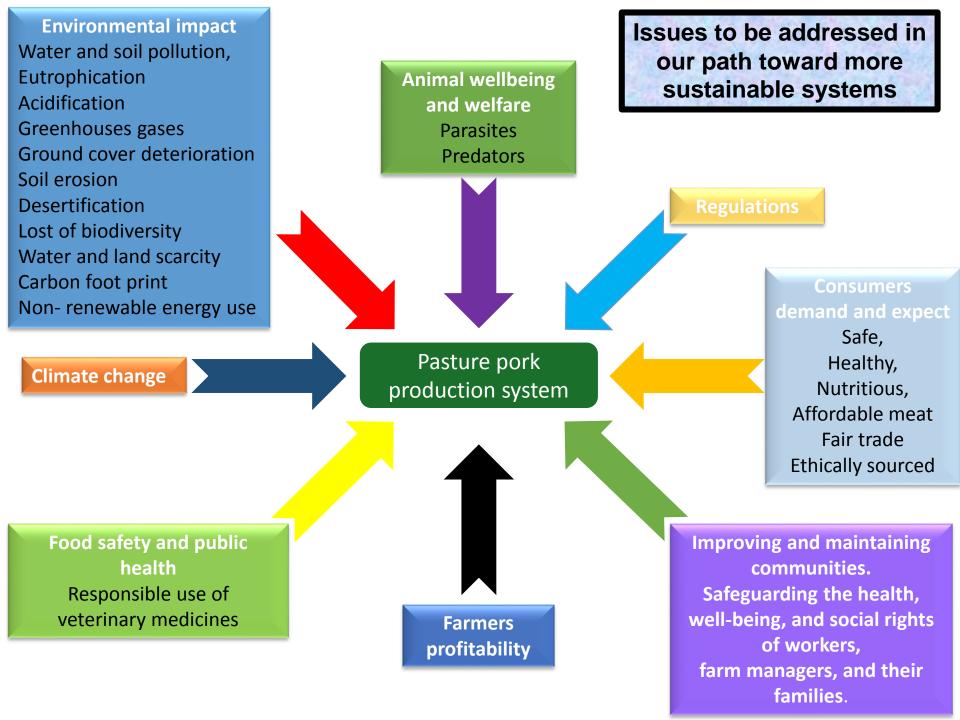

Pasture pork production: a journey to sustainability

ALL THE PAR

Silvana Pietrosemoli April, 3rd 2018

About me ...

UNIQUELY BARN RAISED



Pathway toward a more sustainable pasture pork production system

- Issues to be addressed in our journey to sustainability
- The pasture pork production systems we are looking for
- Experiences that have proven successful
- Summary of CEFS research- Environmental impact reduction in pasture pork production systems

What kind of pasture pork production systems are we looking for?

- Flexible
- Resilient
- Innovative approaches
- Commitment to continuous improvement
- Improve resource efficiency
- Diversification of resources
- Make better use of local resources
- Reduce dependence of external inputs
- Adopt best management practices
- Improve the management of forages
- Improve feeding and breeding practices
- Foster the use of renewable energies
- Develop a record keeping culture
- Explore emerging markets
- Benefit from environmental services payments

Our goal:

Design pasture pork production systems More productive more efficient more resilient more sustainable

There is no "one-size-fits-all" solution

Need to develop production systems adapted to each farm unique circumstances

Path toward a more sustainable pasture pork production system

- Better use of local resources (alternative feedstuffs, heritage breeds, traditional systems)
- Traditional and new technologies (genetics, breeding)

Increase resources efficiency (animals, feed supply chains)
 Implement best management practices

Make a better use of local resources Improve breeding programs

"Breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems."

- Pure vs crossed.
- Specialty niche markets
 Pure breed
 Control inbreeding.

"Genetic Biodiversity" Rydhmer, Gourdine, de Greef and Bonneau, 2014

Increase survival rate on pre and post weaning periods

Breeding – Maternal abilities.

Baxter et al., 2011a Optimize farrowing hut and creep design Baxter et al., 2011b

Piglet protection features: Slopped wall, rails, raised bars Provision of substrate (10-15 cm) and nesting material

THE REAL PROPERTY AND A RE

Improve Feed efficiency, Zero feed wastage, Feeding strategies

Single diet, blend feeding or three-phase feedingSex-split

Lower nutrient excretion Lower costs

Niemi et al., 2010; Schulz and Hadrich, 2014; Moore, Mullan and Kim, 2016

Alternative feed resources and by-products, food waste recycling

Be aware of potential impact on performance, carcass and pork quality

Make a better use of local resources, multispecies pastures

(Grasses, legumes and herbs)

Barley and Austrian winter pea

To encourage pasture consumption:

Provide new grazing areas (Andresen and Redbo, 1999)

Supplemental feed restriction [FR] (Kanga et al. 2012; Kongsted et al. 2015)

To avoid impact on performance

FR ≤ 20 to 30% for growing pigs **FR** ≤ 30% for replacement gilts **FR** ≤ 25% Lactating sow **FR** ≤ 50 to 70% Gestating sow (Bauza,

FR \leq 50 to 70% Gestating sow (Bauza 2005;2007; Bochicchio et al., 2012)

"Seeds are cheaper than supplemental feed".

Options to consider: grasses, legumes, brassicas, chicory, plantain, amaranth, Jerusalem artichoke, millets, and other forages.

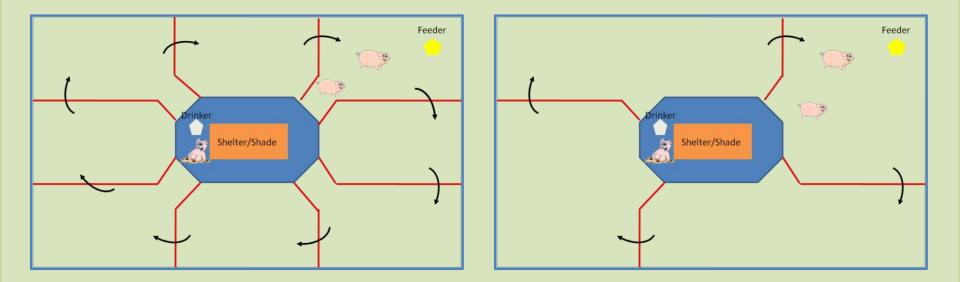
Ryegrass, chicory and clover

Image courtesy Universidad de la Republica, Uruguay

Improve pasture management, establish adequate stocking rates

Referential Stocking Rates to Maintain Vegetation Cover

Annual species *10 to 20 weaned to finishing head/acre * 2 to 4 sows + litter/acre


Perennial species * 15 to 30 weaned to finishing head/acre * 6 to 8 sows + litter/acre

Natural vegetation * 4 to 10 weaned to finishing head/acre * 0.5 to 1 sows + litter/acre

Stocking rates must be adjusted according to forage species, climate, soil, drainage and managers' skills.

Improve pasture management, implement rotational stocking systems

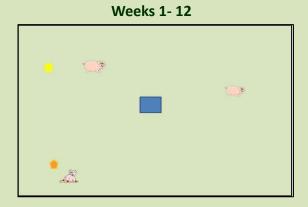
Rotational Stocking

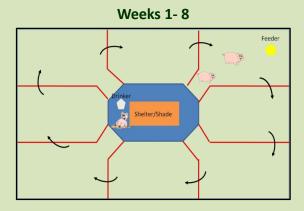
Weeks 1 to 8

Weeks 9 to 12

Same paddock, changes are consequence of internal fences removal

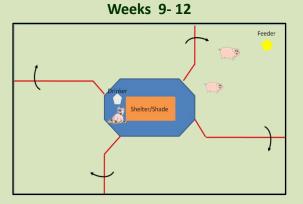
Rotationally managed bermudagrass paddock

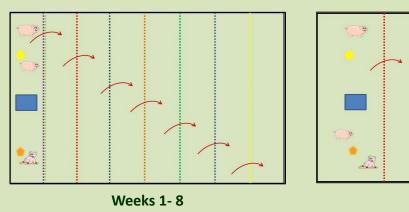

0.37 acre bermudagrass pasture divided in 9 sections: 1 HUA and 8 grazing paddocks Period of occupation per section: 1 week Stocking rate: 4 sows per paddock, equivalent to 11 sows/acre Rotating hogs between paddocks provides rest periods for forages to recover and helps to avoid the build-up of parasites and diseases

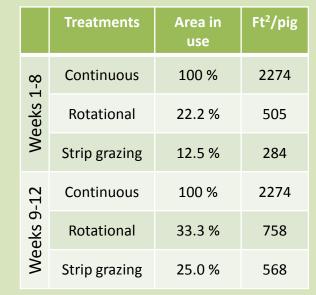


Recovery of bermudagrass managed with a stocking rate of 11 sows/acre after 3 weeks of rest. Note the difference in color with the section at left that has not been grazed yet.

Stocking Systems

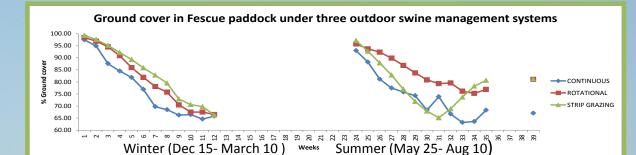

Continuous stocking




Weeks 9-12

Rotational stocking

Rotational strip



Stocking rate equivalent to 20 hogs/ac (2600 lb/ac)

Paddock size 18192 ft²

In the Rotational Stocking system pigs have permanent access to the central area

Tall fescue under three stocking systems

THE PARTY OF THE TAXABLE PARTY OF TAXA

20 pigs/ac.

Soil NO₃ (22.5%), P (18.6%), K (19.5%), Mn (8.1%), Zn (14.3%) , and Cu (8.3%) higher in the continuous system.

Same pig growth (1.61 lb/d), feed intake (4.32 lb DM/pig/d) and gain to feed (0.37 lb gain/lb feed). Changes in sward botanical composition: tall fescue (65%), other grasses, (30.3%) and broadleaf species (4.7%)

Sylvopastoral systems

Image courtesy J-M Luginbuhl

Image courtesy ARSIA

"Preliminary analysis suggests that the financial performance of this agroforestry enterprise could be superior to that of a pasture-based enterprise".

> Brownlow, Dorward, and Carruthers, 2005

Sylvopastoral systems, AGFORWARD project

Pigs integrated with energy crops, poplar (*Populus* spp) and willows (*Salix* spp)

AGFORWARD, Italy

AGFORWARD, Denmark

Evaluation of trees as fodder source, mulberry (*Morus* spp)

AGFORWARD, Spain

Images courtesy AGFORWARD project

Waste recycling, business diversification

Vermicomposting

Anaerobic digestor

Explore emerging niche markets, charcuterie

Explore new marketing strategies: on farm sales, INTERNET, Social Media

Farmer markets, restaurants, wholesaler/distributor, processing plants, small retailers, CSA, farm stand, online, aggregators

Multifunctionality and Ecosystem service delivery

"... livestock sustainability assessments tend to focus primarily on environmental and economic dimensions; therefore, these valuations might be limited because they do not consider the complete set of associated goods and services (soil fertility, farmland biodiversity, food security, rural vitality and culture).

Hence, a need exists to recognize the multiple contributions provided by livestock to human well-being and society. "

Ryschawy, Disenhaus, Bertrand and Allaire, 2017

A CARLES AND A CAR

Take home ideas

Sustainability is not a finish line, rather is a journey enriched by our commitment to continuous improvement.

This continuous transformation implies a change in the way we conceive our rapport with the environment, with the territory and with the surrounding community.

Farmers should shape their production system in a way to find a balance among the three aspect of sustainability: environmental impact, animal welfare and economy/profitability. Sometimes, this would imply accepting some trade offs.

To guaranty system and farm survival over time, profitability goals need to be achieved.

Acknowledgments

Our grateful thanks to CEFS staff for field assistance. Financial support for the project was generously provided by: USDA/NRCS-CIG SARE KELLOGG Foundation

Silvana_Pietrosemoli@ncsu.edu

For a Sustainable Pasture Pork Operation:

Design a flexible production system adapted to the unique circumstances of your farm.

Select an animal breed suitable for outdoor production.

Select a site that minimizes potential runoff to waterways.

Use appropriate vegetation.

Build vegetation buffer filters to limit runoff to waterways or drainage ditches.

Include locally-available feedstuffs in your feeding program.

Implement management practices to reduce environmental impact and adapt them to the season

- Adjust stocking rate and length of animals stay according to climate, soil, drainage and managers' skills.
- Allow your paddock a resting period
- Protect areas sensitive to soil compaction
- Reduce feed wastage
- Plan periodic movements of structures and equipment
- Utilize crops to remove soil nutrients
- Conduct periodic soil tests

Andresen, N. and Redbo, I. (1999). Foraging behaviour of growing pigs on grassland in relation to stocking rate and feed crude protein level. *Applied Animal Behaviour Science*, 62, 183–97.

Andersen, I.L., Berg, S. and Knut Bøe, K.E. 2005. Crushing of piglets by the mother sow (*Sus scrofa*)— purely accidental or a poor mother? Applied Animal Behaviour Science , 93(3): 229 - 243

Animal Task Force. 2016. Improvement of biomass utilization and development of alternative feeds that are not competing with human food; Available at:

http://animaltaskforce.eu/Portals/0/2nd%20White%20Paper/ATF-2nd%20whitepaper_final.pdf [Accessed 14 Dec 2017]

Bauza, R. 2007. Alimentos alternativos para animales monogástricos. In: IX Encuentro de Nutrición y Producción en Animales Monogástricos. [pdf] Montevideo: Universidad de la Republica, Facultad de Agronomia. 47–55. Available at: http://upc.edu.uy/ixe/category/23-memorias-del-encuentro [Accessed 8 June 2016] ISBN: 978-9974-0-0399-6

Bauza, R. 2005. Utilización de pasturas en la alimentación de reproductores. In: Bauza, R. (ed.). Utilización de pasturas en la alimentación de cerdos. [pdf] Montevideo: Universidad de la Republica. 5– 14. Available at: http://upc.edu.uy/images/documents/extension/Jornada-Taller_Pasturas_dic05.pdf [Accessed 8 June 2016]

Baxter, E.M., Jarvis, S., Sherwood, L., Farish, M., Roehe, R., Lawrence, A.B., Edwards , S.A. 2011a. **Genetic and environmental effects on piglet survival and maternal behaviour of the farrowing sow**. Appl. Anim. Behav. Sci., 130: 28-41

Baxter, E.M., Lawrence A.B. and Edwards, S.A. 2011b. Alternative farrowing systems: design criteria for farrowing systems based on the biological needs of sows and piglets. Animal, 5(4):580-600

Bochicchio, D., Comellini, M., Marchetto, G., Goracci, J. and Della Casa, G. 2012. Il pascolo nell' allevamento del suini biológico mediterraneo. In: Zanoli, R. and Vairo, D. (ed.). *Agricoltura biológica: modelo sostenibile per un Mediterraneo in transizione*. [pdf] Ancona. Grab-it, 16–21. ISBN 978-88-9077-400-3 Available at: http://www.enea.it/it/pubblicazioni/pdf-volumi/V2011CongressoRIRAB.pdf [Accessed 14 June 2016].

Kanga, J. S., Kanengoni, A. T., Makgothi, O. G. and Baloyi, J. J. 2012. Estimating pasture intake and nutrient digestibility of growing pigs fed a concentrate-forage diet by n-alkane and acid-insoluble ash markers. *Tropical Animal Health and Production*, 44(7), 1797–802. doi: 10.1007/s11250-012-0141-1.

Kielland, C., Wisløff, H., Valheim, M., Fauske, A.K., Reksen, O. and Framstad, T. 2018. **Preweaning mortality in piglets in loose-housed herds: etiology and prevalence**. Animal, Jan 8: 1-8 doi:10.1017/S1751731117003536

Kongsted, A. G. and Jakobsen, M..2015. Effect of genotype and level of supplementary concentrate on foraging activity and vegetation cover in an organic free-range pig system. Acta Agriculturae Scandinavica, 65(3/4),139–47.

Niemi, J.K., Sevón-Aimonen, M.L., Pietola, K. and Stalder, K.J. 2010. The value of precision feeding technologies for grow–finish swine. Livestock Science, 129 (1-3): 13–23

Moore, K.L., Mullan, B.P. and J.C. Kim, J.C. 2016. An evaluation of the alternative feeding strategies, blend feeding, three-phase feeding or a single diet, in pigs from 30 to 100 kg liveweight. Animal Feed Science and Technology, 216: 273–280

Öhlund, E., Hammer, M. & Johanna Björklund, J. 2017. Managing conflicting goals in pig farming: farmers' strategies and perspectives on sustainable pig farming in Sweden. International journal of agricultural sustainability 15(6):693-707 DOI: 10.1080/14735903.2017.1399514

Picardy, J., **Pietrosemoli, S**., Griffin, T., & Peters, C. 2017. **Niche pork: Comparing pig performance and understanding producer benefits, barriers and labeling interest**. Renewable Agriculture and Food Systems, 1-13. doi:10.1017/S1742170517000230

Pietrosemoli S. and Green, J.T. 2018. Pasture systems for pigs. In Achieving sustainable production of pig meat. Volume 3 Animal health and welfare. Julian Wiseman ed. 300 pags. Burleigh Dodds Science Publishing. UK. ISBN-13: 9781786760968

Phocas, F., Belloc, C., Bidanel, j., Delaby, L., Dourmad, J.Y., Dumont, B., Ezanno, P., Fortun-Lamothe, L., Foucras, G., Frappat, B., González-García, E., Hazard, D., Larzul, C., Lubac, S., Mignon-Grasteau, S., Moreno, C.R., Tixier-Boichard, M. and Brochard. M. 2016. **Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies**. Animal, 10(11):1760–1769 doi:10.1017/S1751731116001051

Ryschawy, j., C. Disenhaus, c., Bertrand, S. and Allaire, G. 2017. Assessing multiple goods and services derived from livestock farming on a nation-wide gradient. Animal. 11(10): 1861-1872. Available at: https://doi.org/10.1017/S1751731117000829 [Accessed 27 Jan 2018]

Schulz, L.L. and Hadrich, J.C. 2014. Feeding Practices and Input Cost Performance in U.S. Hog Operations: The Case of Split-Sex and Phase Feeding. Agricultural and Applied Economics Association meeting. Minneapolis, MN, July 27-29. Available at:

http://ageconsearch.umn.edu/bitstream/169983/2/AAEA%205188.pdf [Accessed 14 June 2016].

Stern, S., Sonesson, U., Gunnarsson, S., Kumm, K.I., Öborn, I. and Nybrant, T. 2005. **Sustainable pig production in the future - development and evaluation of different scenarios**. Report FOOD 21 No 5/2005. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.7315&rep=rep1&type=pdf [Accessed 27 Jan 2018]

Van Huis, A. 2013. Potential of insects as food and feed in assuring food security. Annu Rev Entomol, 58, 563-583