CashCrop Establishment Into/After Cover Crops

Sjoerd W. Duiker, Soil Management Specialist Penn State University

Why No-Till: Reduced Sheet Erosion

Why No-Till: Reduced Gully Erosion

Why No-Till: Water Conservation

Reduced evaporation

Why No-Till: Greater Surface Organic Matter Content

Why No-Till: Soil Structure Improvement

This soil can become like this

Why No-Till: Great Biological Activity

# Earthworms/A	No-Till	Plow
Cont.Corn Cont. Soybean Clover/Ryegrass Pasture+manure	75,000 500,000 2,000,000 5,000,000	40,000 230,000

Data from Indiana Crop and management systems continuous for at least 10 years

Relax! Do no tillage!

Why No-Tillage? - Labor Savings

Soil tillage is hard work!

07/18/2009

No-Till for Faster Cover Crop Establishment

Why No-Till : to let cover crops develop more growth in Spring

JOHN DEERE

7330

5/2015

Equipment Considerations: No-Till Starts at Harvest

Effects of uneven residue distribution

Uneven residue distribution

Chaff not spread out

1 TOTAL

Straw Residue Effect on NT Sorghum-sudangrass

Equipment Considerations: Planters vs Drills

- Better residue flow through machine
- More options for residue handling attachments
- More down-pressure per opener possible
- Fertilizer and pesticide handling capacities]
- Better seed depth control
- Better seed metering.
- More expensive
- Fewer seed sizes handled

74810

Equipment Considerations: Enough Weight on Planter or Drill

Example of Improved Planter Set-up for No-Till

- 4-row White 6100 pull-type corn planter
- 7 rows for soybeans with splitters
- Liquid side-dress at 2+2
- Converted for no-till in 2006

previous setup

new setup

Equipment Considerations: Drills

- Seeding Rate calibrate
- Depth Control
- Press wheels for seed to soil contact
- $_{\circ}$ Read the Manual
 - Note all references are for new equipment

Drills

- Seeding depth more critical than rate
- Single disk openers
 - Better residue handling capacity
 - Better depth control
- Double disk openers
 - Better for small seeded crops
- \circ Shoe type
 - Limited residue handling ability
 - Depth control limited
 - Not very common

Drills

• Shoe type

Coulters

- Purpose cut through residue
- Narrow design
 - Less soil disturbance
 - Work better under wide soil conditions
- Close to seed openers
- Run at planting depth
- The more iron to push into the soil – the more weight required on drill

Bubbled coulter

Turbo coulter

- 13-wave fluted coulter 1" waves
- 16" -20" diameter

- 8-wave fluted coulter
 - 1 ¼" waves,
 - 14 5/8"-20" diameter

Coulters for no-tillage and zone-tillage

Depth Control

• Depth gauge wheel or press wheel

Press Wheels

- Purpose
 - Seed-to-soil contact
 - Control seeding depth
- 2 inch or V shaped preferred
- 1 inch poor depth control
- >2 inch poor closing action

'Planting Green'

What: Planting main crops in actively growing cover crops

Why:

- To allow the cover crops to put on more biomass
- To improve soil
- To avoid hair-pinning problems
- To improve weed control
- To save water in summer
- To increase natural enemies of insect pests attacking main crop

'Planting Green' – attachment Designed and developed by farmer and engineer, Charles Martin, Perry County, Pennsylvania

Cover crop partially dead - difficult to cut by coulter, 'hairpinning'

Partially killed cover crop problems

Wall & Manual Town & S. M. S. M.

Cover crop 'bales' created by row cleaners

Some 2015 Planting Green Experiences

Planting corn into hairy vetch in a 3-year corn-soybean-wheat/vetch rotation

Vetch biomass increased 500 lbs/A in 4 days!

		Vetch Biomass (Ibs/A)	Typical N content (lbs/A)
May 8th	Tillage time	1829	73
May 12th	Planting time	2326	93
SALAN AND AND AND AND AND AND AND AND AND A			

05.12.2015 15:51

Planting Green – corn into 1 ton hairy vetch DM Herbides: glyphosate, Lexar, 2,4-D May 18th

05.12 2015 15:52

231

Vetch plowed in with moldboard plow

.....

Vetch plowed in with chisel plow

Moldboard/disk/harrow

A SALAN

Planted green

Soil after MB/disk/harrow

Soil after Planting Green

After Moldboard/disk/harrow – harvest time

iter Planting Green – harvest time

Corn Yields 2015

	Yield (bu/a)
Moldboard/disk/harrow	187 a
Chisel/disk/harrow	211 b
Planted Green	203 b

Used 90 lbs/A Nitrogen fertilizer

Farmer-Cooperator Experiments

- Centre County (soybeans only)
- Clinton County (corn + soybean)
- Lancaster County (corn only)
- Termination timing

 Early
 - Late (planted green)

2015: Dry spring, wet summer

Corn Experiment

	Rye Planting		Early Termination	Late Termination	Cash Crop Planting
Site	Date	Rye Seeding Rate	Date	Date	Date
Clinton Co.	31-Oct	54 kg ha $^{-1}$	18-May	7-Jun	27-May
Lancaster Co.	20-Oct	41 kg ha⁻¹	2-May	13-May	11-May
Landisville	30-Sep	54 kg ha⁻¹	5-May	29-May*, 21-May	19-May
Rock Springs	30-Sep	54 kg ha⁻¹	8-May	18-May	14-May

Corn Experiment

 Corn populations were no different between treatments at ¾ study sites. At Rock Springs, population was reduced by 9%

Corn Experiment

 Corn grain yield was significantly lower (9%) at half of the study sites. Yield was numerically lower at all four sites.

Plots were planted on the same day. (Landisville, PA)

planted into early terminated rye

Planted Green into

Planting green increased beneficial insect populations and predation in the rye treatment

Soybean Experiment

Soybean Experiment

• Soybean populations were reduced by an average of 7% in late-terminated plots in 3 of 4 locations.

Early terminated Landisville

Planted Green Landisville

PennState Extension

Planting green increased soil cover by almost 15% in all treatments

Landisville Soy

Soybean Experiment

• Soybean yield was not affected by rye termination time at any of the 4 locations.

