Soil Health and NPK

Rick Haney PhD, USDA-ARS, Temple, TX

USDA-ARS Temple Texas 2012

How it's tested: Soil NPK

Treat the soil as a non-living

non-integrated system

Focus on physical and chemical

Ignore the biological

Extract soil with chemistry that soil never sees

Measure the house and not the food

How can we test it?

Integrate the data to form a more compete picture of biology and chemistry

Wheat yield attributable to fertilizer: 1930-2000 Magruder plots (OSU)

Corn yield attributable to fertilizer and lime: 1955-2000 Morrow plots (U. of Illinois)

We can Unlock the Secrets in the Soil

We can GROW microbial and organic chemical diversity with plant roots (Plants fix dirt)

Nitrogen

- Current labs
- 1. NO3-N
- 2. 2 M KCl (1965)

Soil Health Tool

- 1. NH4-N
- 2. NO3-N
- 3. WETN
- 4. Solvita
- 5. Org N
- 6. Org C:N
- 7. MAC WEON
- 8. N min
- 9. Water

Phosphate Cycle

Phosphate

Current labs

1. ICP P or PO4-P using 7 different extractants

Soil Health

- 1. ICP P
- 2. PO4-P
- 3. H3A (mimics plant root exudates)
- 4. Solvita
- 5. Org C:N
- 6. P min
- 7. % water P/ H3A P
- 8. % P/ FeAl
- 9. Ca/FeAl

Soil Health

Current labs

- 1. Permanganate: active carbon (not what soil microbes "see", they see water soluble carbon)
- 2. Organic matter (the house, not the food)
- 3. Anaerobic 7 day Nmin (40 C, anaerobic, not what happens in the field, can't measure N immobilization)

Soil Health Tool

- 1. Solvita (microbial respiration/activity)
- Water soluble Organic C (microbial food)
- 3. Water soluble Organic N
- 4. Org C:N
- 5. Soil health score
- 6. Cover crop suggestion

Traditional Soil Testing Methods

Soil N, P, K

Soil pH, CEC

Recommendations

% Organic matter

Where's the soil biology?

Lab Chemistry

- Sulfuric acid
- Hydrochloric acid
- Nitric acid
- Acetic acid
- Phosphoric acid
- KCI
- Ammonium acetate
- Diethylene triamine pentaacetic acid
- Ethylenediaminetetraacetic acid
- Ammonium nitrate

- Water
- Naturally occurring organic acids (H3A)

History

1896	1919	1924	1934	1935
Oxidation of Organic Compounds	Gainey stated that CO ₂ , NH ₄ ⁺ and NO ₃ ⁻ formation are parallel processes and of a biological nature	Lebedjantzev noticed that soil, which had been dried and rewetted, was more fertile than field moist soil	Corbet stated that, "for purposes of agriculture it would be preferable to evaluate microbial activity rather than the total population" "CO ₂ evolution was a more pertinent estimation of microbial concentrations than that of plate counting"	Vandecaveye and Allen: a sequence of microbial groups involved in organic matter decomposition CO ₂ evolution was greatest the first day after rewetting dried soil

1944	1956	1958	1959	1960
Bodily showed that CO ₂ evolution was closely correlated with fluctuations in the numbers of bacteria	Stevenson showed that the flush of C and N from rewetting dried soil was due to biological activity and not chemical action	Birch stated that spores are very resistant to drying and when rewetted, soil followed a uniform flush of CO ₂	Birch: Successive drying and rewetting resulted in a flush of C and N which was repetitive and also occurred in the field.	Birch: Laboratory results underestimate field conditions

1970 and beyond: Change focus from CO₂ evolution to soil microbial biomass C (SMBC)

Research History - 1994

Soil Microbial Activity (respiration)

Solvita 1-day CO₂-C

Soil Microbial Activity Test with Digital Reader

Soil Health Tool

Measure soil health by **asking** our soil the right questions:

- What is your condition?
- Are you in balance?
- What can we do to help?

"Whoa! That was a good one! Try it, Hobbs — just poke his brain right where my finger is."

Soil Biology is a Complex Integrated Living System

- Organic carbon in water drives the system
- Soil microbes take in O₂ and release CO₂

Soil microorganisms have been in R&D for millions of years.

Soil Organic Matter is the "House" microbes live in, Water Extractable Organic Carbon is the "Food" they eat.

Water extractable total N

Water extractable Inorganic N

Water extractable Organic N

Source: The International Plant Institute

Soil Nitrogen Pools

Nitrogen

Organic N: amino acids
Exudation of proteases by
plant roots
Inorganic N: NO3-N, NH4-N

We have been missing half of the N

2M KCl 1965 Bremer

"If plants could not take up organic compounds herbicides would not work" Liz Haney 2013
Plants eat: Inorganic N

And Organic N from soil

organic matter

Balance in your Soil-water extract

- $C: N = Organic C \div Organic N$
- High C:N >20 :1 calculates no N and P mineralization
- As C:N is lowered N and P mineralization increases but is dependent on soil microbial activity

Soil Health Calculation

- Overall health of your soil system.
- Combines several independent measurements of your soil's biological and chemical properties.
- Varies from 1 to 30.
- Track the effects of your management practices over the years.
- Used to calculate cover crop input

New Soil Testing Methods

soil testing in nature's image

Soil Test Integration

Sample Analysis

4 grams each

40 grams

Soil Extraction H3A and Water

What does the plant root really see?

- WATER and a complex mixture of plant root exudates along with microbial derived enzymes and nutrients
- The below ground root system flows with elegance and complexity
- We extract soil with highly disruptive acidic or alkali solutions and call it "plant available"

Soil Extraction

After shaking for 10 minutes 4 grams soil 40 mls (1) H3A, (2) water

After 5 minute centrifuge (1) H3A (2) water

Soil Extractant Filtration

After Centrifugation

Filtration: Whatman 2V pleated filter paper (8 micron)

Organic C and Total N from Water Extract

Inorganic N and P H3A and Water

ICP Elemental Ca, P, K, Fe, Al H3A

Microbial Activity - A Living Body **CO**2 (plant available) Nitrogen **Phosphate** Soil Microbes Fertilizers, manures **Soil Organic Compounds** (Carbon, Nitrogen, Phosphorus) **Unavailable for Plants**

Solvita Soil Microbial Activity

25 ml water

Capillary action rewets soil to field capacity

1996-2013

 There are over 20 peer reviewed journal articles by Haney and others to support the science behind these soil analysis tests.

000000

Soil Health Tool - Results

Buddy (ARS) and Chris (NRCS)

http://research.brc.tamus.edu/snap/

Rick Haney
Soil Scientist
USDA – ARS

Grassland, Soil & Water Research Laboratory

808 E. Blackland Road
Temple, TX 76502
(254) 770-6503
rick.haney@ars.usda.gov

